

REMODEL - Robotic tEchnologies

for the Manipulation of cOmplex

DeformablE Linear objects

Deliverable 5.1 –
Planner architecture

Version 2020-10-06

Project acronym: REMODEL

Project title: Robotic tEchnologies for the Manipulation of cOmplex DeformablE Linear ob-

jects

Grant Agreement No.: 870133

ObjectsTopic: DT-FOF-12-2019

Call Identifier: H2020-NMBP-TR-IND-2018-2020

Type of Action: RIA

Project duration: 48 months

Project start date: 01/11/2019

Work Package: WP5 – Cable Manipulation Planning, Execution and Interactive Perception

Lead Beneficiary: UNIBO

Authors: All partners

Dissemination level: Public

Contractual delivery date: 31/10/2020

Actual delivery date: 30/10/2020

Project website address: https://remodel-project.eu

Deliverable Template – REMODEL - Version 2019-10-14 2

1 Scope

The planner architecture is one of the keys for building the robotic system, because a clear

and well-structured definition of the components and their communication interfaces allows

building the system on strong foundations.

This enable each module to be implemented independently by the different partners and then

easily connected based on the predefined interfaces. To this end, the ROS middleware will

be exploited, and the components of the system will be precisely defined together with their

interfaces. The process will consist in setting up tests both in simulation and with the real

robot that will progressively show more complex planning challenges.

REMODEL must be able to determine the next action to be performed by the robot in a dy-

namically changing environment toward the execution of the assembly task. While motion

planning determines how to perform a particular action, task planning determines which ac-

tions to perform.

Though there is an extensive body of work on automated task planning [42][43], the vast

majority is not directly applicable here, since the initial condition is unknown due to the un-

known initial deformation of the objects to manipulate. To cope with changing initial condi-

tions, we must replan often, and therefore rapidly. This disqualifies planners such as [44][45].

Even more agile planners such as [46], focusing on fast plan generation, are generally dis-

qualified as they lack the expressivity required to model the switchgear domain and to ex-

press and optimize the relevant quality measures.

Therefore, we intend to use a planner that makes use of domain-specific guidance, an area

where we have extensive experience. Such planners have proven highly effective and ex-

pressive in a variety of domains [47][48][49].

Through the REMODEL planner, we will provide support for specifying assembly prefer-

ences, in order to generate plans fulfilling the task requirements as well as safety or env i-

ronmental constraints. New optimization techniques will be developed that are adapted to

assembly plans, in order to generate high quality solutions with the performance that is re-

quired in the given context. The robot plan can be also adapted to the actual working condi-

tions based on manually programmed skills and preferences, exploiting machine learning

techniques to deal with task uncertainties.

[42] D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice. Morgan

Kaufmann Publishers Inc., 2004.

[43] M. Ghallab, D. Nau, and P. Traverso. Automated Planning and Acting. Cambridge Uni-

versity Press, 2016.

[44] S. Richter and M. Westphal. The LAMA planner: Guiding cost-based anytime planning

with landmarks. J. of Artificial Intelligence Research, 39(1):127–177, 2010.

[45] I. Cenamor, T. de la Rosa, and F. Fernandez. IBACOP and IBACOP2 planner. In IPC

planner abstr., 2014.

[46] V. Vidal. YAHSP3 and YAHSP3-MT in the 8th int. planning competition. In IPC planner

abstr., 2014.

Deliverable Template – REMODEL - Version 2019-10-14 3

[47] T. Au, et al. SHOP2: an HTN planning system. CoRR, abs/1106.4869, 2011.

[48] F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge

for planning. Artificial Intelligence, 116(1–2):123–191, 2000.

[49] J. Kvarnstrom and P. Doherty. TALplanner: A temporal logic based forward chaining

planner. Annals of Mathematics and Artificial Intelligence, 30(1):119–169, 2001.

[50] J. Kvarnstrom. Planning for Loosely Coupled Agents Using Partial Order Forward-

Chaining, Int. Conf. on Automated Planning and Scheduling (ICAPS), 2011.

2 Planner Description

The REMODEL planner will leverage on a set of low-level actions, implemented as ROS ac-

tion servers with standardized interface, able to react to changing products and environmen-

tal conditions thanks to the input of the sensors (vision, force and tactile sensors) and of the

production knowledge database (T3.1). Those low-level actions can be combined in macro

actions or directly called by the REMODEL planner. Therefore, the REMODEL planner will

establish for each task to be carried out along the manufacturing (e.g. the connection of a

cable, the routing of a wire, the placing of a connector) which is the set and the order of low-

level actions and macro actions, each of them addressing a subtask, required to accomplish

the task itself. This selection will be performed on the base of the information provided by the

product database (T3.1) according to the task and component description, by means of a

proper association between task and component characteristics and the required actions to

be involved in the task execution.

The REMODEL planner will be based on the FlexBE capabilities, in order to facilitate the

definition of new behaviors (i.e. combination of low-level and/or macro actions) and to exploit

its behavior engine to run and monitor the task execution. FlexBE behaviors will be defined

as nested state machines, in which each state will address the execution of a single task

operation.

A new REMODEL behavior generator exploiting XML notation for the automatic definition of

FlexBE behaviors will allow for an easy and flexible implementation of new behaviors and

macro actions during task execution.

The REMODEL planner will feature four levels of abstraction to properly address and gener-

alize to all the REMODEL use cases:

 A Use Case Supervisory level for the dynamic definition and implementation of each

manufacturing application according to the information provided by the production

knowledge database (T3.1)

 A Task Supervisory level for the execution of each task behavior (e.g. full deployment

of a single cable in a gearbox)

 A Behavior Control Level for the execution of macro operations (e.g. the connection

of a cable, the routing of a wire, the placing of a connector)

 An Action Control Level for the execution of each single operation (e.g. detect the ca-

ble, pick the cable, place the cable) through ROS actions servers.

Deliverable Template – REMODEL - Version 2019-10-14 4

System failures in the execution will be specifically handled on the corresponding level ac-

cording to the severity of the problem.

The Use Case Supervisor (Fig. 1) will generate and implement the ordered sequence of

tasks provided by the production knowledge database (T3.1). The Use Case Supervisor will

be also connected to the User Interface defined in T3.2 to enable the user to monitor and

interact with the execution of the robot tasks. By exploiting the REMODEL task behavior

generator, it will define and implement the FlexBE state machine for each specific task

through dynamic composition of macro operations and actions. A complete description of the

Behavior generator will be presented in Chapter 3.

Figure 1. The Use Case Supervisor.

At the beginning of the process or every time a task is completed successfully, the supervisor

will automatically load the information for the next task from the production knowledge data-

base (T3.1) and implement its new state machine if not available or simply launch it if already

available. In case of failure in the execution of a task, the supervisor will exploit the infor-

mation provided by the system (sensor data, failure information) to rebuild the state machine

or change the parameters to address the arisen problems, eventually by including some ac-

tion to repeat the required measurements. The generation of task behaviors and failure poli-

cies will be implemented according to the user specifications. The vector of task parameters

will be passed along the state machine and implemented in each step of the work at the ac-

tion server level.

Each task behavior (see Fig. 2) is composed as a series of actions (yellow blocks) and low-

level behaviors describing macro-actions as placing a connector or routing a cable (purple

blocks). The task supervisor monitors the execution of each task and send any failure infor-

mation to the use case supervisor in case a new planning is needed.

Deliverable Template – REMODEL - Version 2019-10-14 5

Figure 2. The Task Supervisor.

Each low-level behavior is defined as a state machine implementing several actions and fail-

ure policies. Behaviors that have been defined previously can be nested inside a new behav-

ior according to the task needs. Any new behavior will be generated through the REMODEL

behavior generator during the planning phase of each task.

Figure 3. The state machine for the place connector operation.

In Figure 3 an example of a state machine for the placement of a cable connector is pro-

posed. For a different task, the sequence and type of action servers to call will change ac-

cordingly. The system is characterized by three actions and a failure recovery state. By trav-

ersing the state machine, the system will localize the requested component and connector

through the product data and a vision system (LocateGearboxComponent state). and will

perform the insertion of the cable (InsertCable state) and the fixing of the connector (FixCa-

ble state). In case of failure for environmental causes (wrong detection, unsteady deploy-

Deliverable Template – REMODEL - Version 2019-10-14 6

ment, etc.) a recovery action will be attempted (ExtractCable state) and the localization will

be performed again. The number of attempts for each state and their recovery policies will be

defined according to the user request. In case of repeated failures or in presence of external

factors affecting the task, the system will mark the operation as failed and send all data

available to the supervisory level for real time modifications of the state machine.

3 ActionLib States

FlexBE states are the high-level building blocks from which behaviors are constructed and

are supposed to interface with the capabilities of a REMODEL robotic system. ROS actionlib

provides an interface where robot capabilities can be provided by ROS nodes implementing

an action server and states can then access them by acting as an action client. The actionlib

interface is designed for long-term (longer than one update cycle) actions as it is non-

blocking and optionally provides feedback while being executed. This makes it a perfect in-

terface to be used along with FlexBE. Therefore, it is highly recommended to base the de-

velopment of REMODEL abilities on action interfaces.

 Action Definition 3.1

As an example of action interface, TECNALIA provided the action definition for the PlacePin

ability.

Define the goal
string id # Identifier for traceability

string robot_1_name
string robot_2_name

float64 path_space
float64 connector_space
bool centered # Set true to center all poses
bool rotate # Set true to rotate and put the long axis in Y

bool show_in_TF

float64 timeout # In seconds

Define the result
string id

bool success
string message
float64 elapsed_time # In seconds

int16 error_code
string error_message

Define a feedback message
string id
string message
float64 elapsed_time # In seconds
float64 completed_percentage

Deliverable Template – REMODEL - Version 2019-10-14 7

The general structure it is suggested to adopt for the implementation of REMODEL abilities

can be summarized as in the following:

 In the goal an ID to the action is provided, as well as a timeout. Here also the action

specific parameters are provided;

 The result provides the ID, success (boolean), an optional message and the elapsed

time, as well as error management variables;

 The feedback provides the ID, an optional message, the elapsed time and the estima-

tion of the completed action percentage.

 Flexbe Action Client 3.2

In the following, a potential implementation of the FlexBe ActionState calling the PlacePin

Action Sever previously described in reported as an example of how to implement Action-

States for all the REMODEL abilities. To implement the Flexbe ActionState t for the RE-

MODEL abilities, make sure to import the action client proxy and the required message types

of the action interface:

from flexbe_core.proxy import ProxyActionClient

example import of required action

from remodel.msg import PlacePinAction, PlacePinGoal

 Declaration 3.2.1

It is recommended to create the ActionState client in the constructor of the state as this will

check the availability of the action server before starting the behavior and thus, reduce the

risk for runtime failure.

In order to declare the required ActionState client, add the following code to the constructor:

self._topic = 'remodel_abilities/placepin'

self._client = ProxyActionClient({self._topic: PlacePinAction})

 Sending a Goal 3.2.2

Typically, a state sends its goal once when it becomes active in order to trigger a certain ac-

tion. Thus, create and send the action goal in the on_enter callback of your state. You can

access userdata input keys here as required.

goal = PlacePinGoal()

goal.id = userdata.placepin_id

self._error = False

try:

 self._client.send_goal(self._topic, goal)

except Exception as e:

 Logger.logwarn('Failed to send the PlacePin command:\n%s' % str(e))

 self._error = True

For robustness, it is recommended to embed the action call in a try/catch block in case there

are any problems during runtime. The variable self._error can be used in the execute func-

tion to return a failure outcome if any problems occurred:

Check if the client failed to send the goal.

Deliverable Template – REMODEL - Version 2019-10-14 8

if self._error:
 return 'command_error'

 Checking for Result 3.2.3

Finally, in the execution loop, it is possible to check if the action has already finished and

evaluate its result. It is possible here to store relevant parts of its result in the userdata.

if self._client.has_result(self._topic):
 result = self._client.get_result(self._topic)
 elapsed_time = result.elapsed_time

 userdata.elapsed_time = elapsed_time
 if elapsed_time > self._max_time:
 return 'PlacePin takes longer than normal'
 else:
 return 'PlacePin finished normally'

It is also possible to access the result status of the action call if there is no notation of suc-

cess provided by the result message itself:

if self._client.has_result(self._topic):
 status = self._client.get_state(self._topic)
 if status == GoalStatus.SUCCEEDED:
 return 'success'
 elif status in [GoalStatus.PREEMPTED, GoalStatus.REJECTED, GoalStatus.RECALLED,
GoalStatus.ABORTED]:
 Logger.logwarn('Action failed: %s' % str(status)) return 'failed'

Note that you need to import the GoalStatus message provided by actionlib for this:

from actionlib_msgs.msg import GoalStatus

A complete exmaple of ActionState implementation can be found on ExampleActionState on
the FlexBe github repository.

4 Autonomous Behavior Synthesis and Execution

While the FlexBE's editor can be used to manually create behaviors such as the one de-
scribed in the previous chapter, an interesting feature for a frequently varying task is the pos-

sibility to autonomously generate and execute new behavior dynamically.

To automatize the behavior synthesis, a Synthesis Action Server has been implemented.
The Synthesis Action Server can be download from the REMODEL gitlab repository
https://dei-gitlab.dei.unibo.it/palli_group/flexbesynthetizer, please refer to the repository RE-
ADME.md file for the documentation about the installation and activation of the server. In
chapter 4, the XML file format adopted by this Synthesis Action Server to describe the state

machine to be synthesized will be described.

 Using the Graphic Synthesis Interface 4.1

In order to set up the Graphic Synthesis Interface, go to the Configuration view in the FlexBE

App where you will find a specific panel for synthesis:

https://github.com/pschillinger/flexbe_project_behaviors/blob/master/PROJECT_flexbe_states/src/PROJECT_flexbe_states/example_action_state.py
https://dei-gitlab.dei.unibo.it/palli_group/flexbesynthetizer

Deliverable Template – REMODEL - Version 2019-10-14 9

Obviously, check the checkbox in order to “Enable synthesis” option in the editor. This re-
quires ROS connection because the Synthesis Action Server needs to be contacted. You
can create a launch file for this purpose which includes both the launch file of the synthesis

server and the flexbe_widget/launch/behavior_ocs.launch launch file.

Furthermore, set the action topic as shown in the picture in order to be compatible to the
REMODEL Synthesis Action Server. System is an optional configuration field where you can
provide an identifier for the used robot system to the Synthesis Action Server, given this is

required or supported by the specific server.

After configuration is done, you can go to the Statemachine Editor view and add a new con-
tainer. You will recognize a new checkbox in the properties of this container which enables

you to use the synthesis interface.

Initial Conditions expects a statement describing the state which is present when entering the
container and Goal specifies the path of the XML file describing the state machine to be gen-
erated according to the specification provided in chapter 4. Please refer to the documentation

of the used synthesis tool for further details on the expected input.

As soon as you click synthesize, an action goal containing the specifications will be sent to
the synthesis server and eventually, a result comes back. This result will replace the current
content inside the container for which you request synthesis but does not touch any part out-
side. Thus, you can synthesize several parts of a behavior independently. After synthesis,
you can open the container, check the result, and potentially make any adjustments or addi-
tions manually. Again, please refer to the documentation of the synthesis server in order to

check if it expects you to perform any manual additions.

Deliverable Template – REMODEL - Version 2019-10-14 10

 Using the Command-Line Synthesis Interface 4.2

After configuring the Graphic Synthesis Interface in order to enable the connection with the
Synthesis Action Server as specified in the previous section, it is possible to access the
FlexBe synthesis features by a command line interface provided through the topic
/flexbe/uicommand by messages of the type flexbe_msgs/UICommand. To activate the
command line interface, go to the Configuration view in the FlexBE App where you will find a
specific panel for settings. Here, you need to check the “Allow ROS commands” checkbox as

shown in the figure below and eventually set a ROS command key for security reasons.

The list of available commands can be retrived by the following command:

rostopic pub /flexbe/uicommand flexbe_msgs/UICommand "command: 'help', key: ' ' "

The FlexBe app will show the following list of commands

To load a specific behavior or a template one, such as my_first_behavior, the load command

must be used as reported in the following:

rostopic pub /flexbe/uicommand flexbe_msgs/UICommand "command: 'load
my_first_behavior', key: ' ' "

To synthesize a specific state machine, the synthesize command is needed

rostopic pub /flexbe/uicommand flexbe_msgs/UICommand "command: 'synthesize Synthes i-

zedBehavior i: start g: TestBehaviorExample_descpt.xml', key: ' ' "

where the SynthesizedBehavior is the name of the synthesized state machine, start is the
initial state denoted by the i: delimiter and TestBehaviorExample_descpt.xml is the path of
the XML file describing the state machine to be generated according to the specification pro-

vided in chapter 4 and denoted by the g: delimiter.

Finally, the generated behavior can be saved by the save command:

rostopic pub /flexbe/uicommand flexbe_msgs/UICommand "command: 'save', key: ' ' "

Deliverable Template – REMODEL - Version 2019-10-14 11

5 Running Behavior Autonomously

Note that running a behavior in autonomous mode means that all operator interaction fea-
tures (like state transition confirmation and Autonomy Level) are disabled and the only avail-
able command is to force the running behavior to stop. This can be done by sending a mes-

sage of type std_msgs/Empty to the topic /flexbe/commands/preempt.

In case of a fully autonomous robot with FlexBE as the top-level control instance, the

onboard behavior engine is need first:

roslaunch flexbe_onboard behavior_onboard.launch

 Command Line / Launch File 5.1

On any computer connected to the ROS master, run the following command to start execu-
tion of the behavior named "Example Behavior":

rosrun flexbe_widget be_launcher -b 'Example Behavior'

This will command the behavior engine to execute the specified behavior. In the case you
run this from a different computer than the onboard computer and have local changes, these

changes will be applied.

In order to include this in a launch file, add the following to the respective launch file:

<arg name="behavior_name" default="Example Behavior" /><node
name="behavior_launcher" pkg="flexbe_widget" type="be_launcher" output="screen" args="-

b '$(arg behavior_name)'" />

 Behavior Action 5.2

Alternatively, you can command behavior execution via action call. This way might be best if
you want to embed FlexBE behaviors in a different top-level control instance. First run the

FlexBE action server:

rosrun flexbe_widget be_action_server

This action server will listen on the action topic /flexbe/execute_behavior of type
flexbe_msgs/BehaviorExecution. For example, you can test executing a behavior from the

command line by running the following minimal example:

rostopic pub /flexbe/execute_behavior/goal flexbe_msgs/BehaviorExecutionActionGoal

'{goal: {behavior_name: "Example Behavior"}}'

 Attaching the User Interface 5.3

Although executing in autonomous mode, it might be desired sometimes to attach to a run-
ning behavior in order to monitor it, send commands, or make runtime modifications. Consid-
ering that the "Example Behavior" is already running in the background, launch the user in-
terface as usual:

roslaunch flexbe_widget behavior_ocs.launch

When the GUI comes up, it should already notify you that there is a behavior running. Make
sure to load the running behavior, "Example Behavior" in this case, first. Otherwise, attaching
will complain and give you the name of the required behavior to be loaded. Afterwards,
switch to the Runtime Control view of the GUI and click the "Attach" button now being dis-
played in the main panel (instead of the option to start behavior execution). This will attach
the GUI to monitor the current execution and will switch the execution mode from autono-

mous to supervised, i.e., the default mode when starting behaviors from the GUI.

Deliverable Template – REMODEL - Version 2019-10-14 12

6 REMODEL State Chart XML

This chapter will describe the XML syntax used in the project for the definition of the behav-
iors for each task. Each XML document will provide a complete description of the state ma-
chine executing a given task. Each task will be characterized by a sequence of actions, im-
plemented as states or low-level behaviors. A set of variables for each task will allow an ex-
change of information between the states and the specification of each state interaction. In
this section a detailed description of each element that can define the XML will be presented.
The XML notation proposed here is based on the SCXML notation, see

https://www.w3.org/TR/scxml.

 <statemachine> 6.1

The top wrapper element, which identifies the file as behavior descriptor for the REMODEL

project.

 Attribute Details 6.1.1

Name Required Type Default Va-

lue

Description

name True string none The name of this task behavior

initial True string none The name of the first state to be executed

 Children 6.1.2

 <datamodel>: The model containing all the parameters of the state machine. See 6.2

 <state>: A state of the machine. See 6.3

 <behavior>: A low level behavior exploited in the machine. See 4.4

 <connection>: A remapping of variables between the output and input of two states.

See 4.5

A valid REMODEL state chart must have at least one <state> or <behavior> and a

<datamodel>.

 <datamodel> 6.2

The model of data used in the state machine, comprising of input/output variables, possible
outcomes and machine parameters.

 Children 6.2.1

 <outcomes>: The possible outcomes for the state machine. See 6.6

 <input >: The input variables of the state machine. See 6.7

 <output >: The output variables of the state machine. See 6.8

 <state> 6.3

The description of a state of the machine.

 Attribute details 6.3.1

Name Requi-

red

Type Default Va-

lue

Description

id True string none The name of this state istance

type True string none The type of istance of the state

topic False String none The topic for the state action server

Deliverable Template – REMODEL - Version 2019-10-14 13

 Children 6.3.2

 <input>: An input variable of the state. Can be defined multiple times. See 6.7

 <transition>: A transition to a different state according to a specified event. Can be
defined multiple times. See 6.8

 <output>: An output variable of the state. Can be defined multiple times. See. 6.9

 <param>: A parameter variable defined in the state. Can be defined multiple times.

See. 6.10

 <behavior> 6.4

The description of a low-level behavior of the machine.

 Attribute details 6.4.1

Name Requi-

red

Type Default Va-

lue

Description

id True string none The name of this low-level behavior istance

type True string none The type of istance of the behavior

 Children 6.4.2

 <input>: An input variable of the state. Can be defined multiple times. See 6.7

 <transition>: A transition to a different state according to a specified event. Can be
defined multiple times. See 6.9

 <output>: An output variable of the state. Can be defined multiple times. See. 6.10

 <connection> 6.5

The description of a remapping between a state input variable and the output variable of a
different state. The remapping allows the state to use as input the result of a previously exe-
cuted state given under a different name. Multiple connections can be specified by defining

multiple <connection> instances.

 Attribute details 6.5.1

Name Required Type Default

Value

Description

output_state_id True string none The name of the state providing the

data

output True string none The name of the variable storing the

data

input_state_id True string none The name of the state requiring the

data

input True string none The name of the variable read from

the state

 <outcome> 6.6

Deliverable Template – REMODEL - Version 2019-10-14 14

The possible outcomes of the state machine. At least one outcome is required for the ma-
chine to be feasible. Multiple outcomes can be specified by defining multiple <outcome> in-

stances.

 Attribute details 6.6.1

Name Required Type Default

Value

Description

name True string none The name of outcome of the state machine

 <input > 6.7

The input variables of the state machine, of a state or a behavior. Multiple input variables can

be specified by defining multiple <input> instances.

 Attribute details 6.7.1

Name Required Type Default

Value

Description

name True string none The name of input variable of the state machine

type False string

none The type of variable stored (int, string, etc.)

 <output > 6.8

The output variables of the state machine, of a state or a behavior. Multiple output variables

can be specified by defining multiple <output> instances.

 Attribute details 6.8.1

Name Required Type Default

Value

Description

name True string none The name of output variable of the state machi-

ne

type False string

none The type of variable stored (int, string, etc.)

 <transition> 6.9

The transition from the current state to a different state according to a specified event. Multi-
ple istances of a transition other states according to different events can be specified by de-

fining multiple <transition> istances.

 Attribute details 6.9.1

Name Required Type Default

Value

Description

event True string none The name of outcome causing the transition

target True string none The name of the new state after the transition

 <param> 6.10

Deliverable Template – REMODEL - Version 2019-10-14 15

A parameter for the state or behavior. Multiple parameters can be defined by defining multi-
ple <param> istances.

 Attribute details 6.10.1

Name Required Type Default
Value

Description

name True string none The name of parameter for the state

value True variable none The value of the parameter for the state

7 Conclusions

This deliverable describes how the planning of also complex dynamically chaning tasks will

be managed and implemented in REMODEL. A guideline for the development and the action

server interface as well as for the FlexBe Action States is here provided together with the

commands required to control the generation and activation of the behaviors from external

applications, such as the production supervisor. An implementation of the behavior synthesis

server is also provided to generate dynamic behaviors for XML task description. The docu-

mentation of the XML format is also reported in this deliverable.

