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1 Introduction  

Deformable Linear Objects (DLOs) is a class of objects that is characterized by two main fea-

tures:  (I) deformability, which refers to the fact that the object is not a rigid body and its ge-

ometry can change, (i)linearity,  which stands for the fact that the object is elongated and the 

ratio of its length to its width is relatively big [1].  Objects of this type are ubiquitous both in 

everyday life and in the industry, where one can find ropes, cables, pipes, sutures, etc.  While 

the manipulation of the rigid objects is already solved for many interesting objects, manipulat-

ing DLOs is a complex and vital task, which has been in the scope of the researchers for over 

three decades [2].  The interest in this topic has grown over the last few years, as the automat-

ic wiring harness assembly is of crucial importance for car manufacturers [3], as well as au-

tomatic completing surgical sutures can help surgeons [4].The  main  issue  in  DLO  manipu-

lation  is  perceiving  the  shape  of  the  DLO,  which  is  crucial  for  closing the feedback 

loop and modeling it to predict its future behaviors or learn some behaviors using simulation. 

These two factors make the DLO manipulation problem particularly hard and interesting.  

Throughout the years, there were multiple attempts made to solve these problems and, as a 

consequence, to create a solution for  DLO  manipulation.   To  perform  DLO  tracking,  one  

has  to  propose  an  algorithm  that  transforms  the data from sensors into the chosen low-

dimensional representation, serving as a DLO state.  While there are attempts to use data from 

tactile sensors [5], the most successful way to perceive the DLO shape is to use vision  and  

depth  sensors.   One  of  the  most  straightforward  approaches  to  DLO  shape  tracking  is  

to  use the  fiducial  markers  located  along  the  DLO  and  track  them  [6]  or  use  them  to  

estimate  the  DLO  shape[7].   A  more  sophisticated  approach,  which  utilizes  the  walks  

on  the  region  adjacency  graphs  built  with super-pixels,  was  presented  in  [8].   These  

methods  focus  on  tracking  by  directly  using  the  measurements as the DLO state.  How-

ever, the most common approaches utilize a model of the DLO and use images or point 

clouds as measurements to iteratively modify its parameters and track the object deformation.  

In [9],a  Structure  Preserved  Registration  algorithm  with  the  object  represented  as  a  

Mixture  of  Gaussians  was used.  Authors of [10] performed DLO tracking using Recursive 

Bayesian Estimator on Spatial Distribution Model, built with the Bezier curve and the chain 

of rectangles.  In [11] authors proposed an approach that extends the Gaussian Mixture Model 

with Expectation-Maximization with a Coherent Point Drift method and  additional  con-

straints  and  regularization  terms  that  encourage  the  estimation  result  to  be  physically 

plausible.  Due to the iterative, and often probabilistic character of the model updates, these 

methods usually have problems tracking rapidly deforming objects, requiring an appropriate 

model and accurate initialization. To mitigate the issue of the slow initialization, authors of 

[12] used the Euclidean minimum spanning tree and the breadth-first search method to per-

form fast initialization and then used EM for updating the B-spline model of the DLO. How-

ever, it still takes hundreds of milliseconds to obtain the DLO shape estimate.  While valid 

and important to perform the tracking,  these models usually do not incorporate the cable’s 

physics,so they cannot solve the second problem – prediction of the future evolution of the 

DLO. A step towards physics-based models was made in [13],  where a modified EM algo-

rithm is used to update the predefined DLO model based on the registered deformations and 

simulation in the physics engine, or in [14], where the FEM methods were used to track the 

deformation of the predefined model.  While being able to predict the beavior of the deforma-
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ble object when subjected to some external stimulation, these models are rather only local and 

valuable to aid the tracking process but not to predict the long-term evolution of the state.  

Thus,to enable planning,  some researchers started to create DLOs models that are firmly 

rooted in the physics of these objects [15, 16].  However, because of the long time needed to 

perform a simulation, these methods are hard to use in practice to solve the DLO shape plan-

ning problem. 

Considering all these advancements in the DLO shape tracking and problems with modeling 

the DLOs physics, most DLO manipulation methods avoid using sophisticated models and 

rely mainly on the frequently updated linear ones, or utilize some learning methods to model 

DLO behavior using data-based approaches. The  second  group,  learning-based  approaches,  

prevail  in  the  case  of  rope  manipulation.   In  [17] an imitation learning approach was used 

to mimic the human performing some manipulation sequence for the rope  lying  on  the  ta-

ble.   Moreover,  instead  of  relying  on  some  model  derived  from  rope  physics,  authors 

proposed to learn pixel-level inverse dynamics of the rope directly from images using self-

supervised learning. Self-supervision can also be used to learn how to estimate the state of the 

rope from the image and then use it to perform model predictive control, as it was done in 

[18].  While, authors of [19] used Casual InfoGAN to generate imagined plans, represented as 

a sequence of images of plausible rope configurations, that connects the initial and desired 

scene image.  A different approach to rope manipulation was described in [20], where learn-

ing the model of the rope, was replaced with a system that utilized the coherent point drift 

method to update the rope model frequently.  Moreover,  instead of learning how to perform 

some rope manipulation movements,  authors  created  a  predefined  set  of  movement  prim-

itives  that  transformed  the  rope  from  one state to another and stacked them in sequences 

to perform some predefined tasks.  A more general approach to the manipulation of DLOs, 

which also utilize the feedback from the DLO online shape estimation, was presented in [21, 

22, 23].  These approaches try to approximate the behavior of the cable using a simple locally 

valid linear model of the cable kinematics updated online using newly acquired DLO shape 

measurements and robot configurations.  In [23] an autoencoder neural network was used to 

extract the shape of the cable from images, and gradient-based updates of the local model 

were made.  In turn, both in [21] and [22] a simple centerline extraction methods were applied 

to extract the DLO shape and updates were made using gradient-free  methods  such  as  mov-

ing  window  least-squares  [21],  recursive  least  squares,  extended  and  unscented Kalman 

filter [22].  Unfortunately, all these methods require some algorithm to determine the order of 

the shape representation coordinates, and the algorithms used in those papers could have 

problems with handlin more complicated but not less serious situations when part of the cable 

is occluded or cable is bent in such a way that it intersects with itself. In this report, we pre-

sent an improved approach to bi-manual cable manipulation.  Using visual feedback and a 

local model of cable kinematics updated using recursive least squares method, we are able to 

generate manipulators movement that transforms the handled cable into the desired shape.  

The proposed solution can  handle  a  much  broader  range  of  shapes  in  more  challenging  

conditions  (occlusions)  compared  to  the State-of-the-Art algorithms.  
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2 Considered problem 

The problem we consider in the demonstrator and this report is how to manipulate the cable  

using two robotic manipulators to morph it into some desired shape .  We are assuming that 

the cable is rigidly grasped by the two robotic arms, at its ends, and throughout the manipula-

tion remains in the camera’s field of view, which is the only source of information about the 

cable shape and can be subjected to occlusions.  The manipulation is performed at low speeds, 

using the incremental position motions, such that the behavior of the cable is not dependent 

form the transient states and cable dynamics and is determined by the equilibrium of its elas-

tic and potential energy.  The error of the achieved object’s shape  is measured using the dis-

tance between sequence of points on the cable  and points on the reference curve  and is 

defined by  

∑| ( ) ( )|  (1) 

 

where and  are defined as 2D B-spline curves parameterized with a normalized curve 

length, and | |is a euclidean norm. 

Visually the problem is presented in Figure 1, where in the first image there is a red cable in 

some initial configuration  and the desired shape denoted with the blue cable shadow , 

while on the second one is a result of successful manipulation, where cable final shape  is 

the same as the desired shape . 

 

 

 

3 Proposed method 

To solve the problem introduced above, we utilize the fast cable tracking system developed in 

the WP4, which we describe here briefly. Having the frequent measurements of the cable 

Figure 1: In this report, we consider the problem of deforming the cable from the initial sha-

pe 𝑆0 (left image) to the desired shape 𝑆𝑟 (right image) using two manipulators. 
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shape , we can use methods similar to the ones introduced in [22] to regress the local linear 

model of the cable deformation and use it to generate moves of two robotic arms that leads 

the cable towards the goal shape . 

 

The general scheme of the proposed solution is presented in Figure 2. While manipulators are 

moving the cable, visual feedback pipeline segments the cable from the image, recognizes the 

cable’s shape, and approximates it with a B-spline curve. Using this information controller 

can update the model of the cable deformation and, using a reference shape , produces a 

positional update that transforms the cable towards the desired shape. In the following subsec-

tions, we will describe the parts mentioned above of the bi-manual cable manipulation algo-

rithm. 

 

Visual feedback 

An essential part of the proposed approach to the bi-manual cable manipulation, which does 

not use an accurate physics-based cable model, is the fast visual feedback that enables us to 

immediately track the behavior and update a simple local model of the cable, and perform vi-

sual-servoing like manipulation. 

At the very first stage, the cable is segmented out from the image. Even though this can be 

done using different algorithms i.e., neural network-based approaches to object segmentation, 

in this demonstrator, for the sake of simplicity, we segmented the cable based on its color.  

In the second step of the image processing skeletonization is applied to the segmented image 

to obtain simplified information about the shape of the segmented cable or its parts in case of 

the occlusions.  Next, to be able to handle more complicated cable configurations, such as 

self-intersections, we remove from the skeletonized image the pixels with more than two 

neighbors, which results in splitting the cable into parts at every point where self-occlusion or 

some accidental branching (which may be caused by the skeletonization procedure) occurs. 

Then, the skeletonized segments are connected to each other to form a single cable (sequence 

of segments), taking into account the distance between segments ends and their orientations. 

Figure 2: General scheme of the proposed solution for bi-manual robotic cable manipulation. 
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Then finally, we fit a B-spline curve into the formed sequence of segments achieving the re-

sultant shape of the cable . 

 

Cable deformation model 

In general, modeling the cable dynamics or kinematics is a challenging task, which is still not 

solved on a satisfactory level, as the models from the literature require intensive computations 

to simulate the cable behavior [15,16]. Therefore, one has to give up some of the properties of 

those models, like globality or accuracy of the model. In our work, we decided to forfeit the 

globality of the model and use some local model, which can be rapidly updated given new 

observations and deviations from the predicted behavior. 

 

 

Since we consider physical objects like cables, we can assume that small movements of the 

robot’s TCPs should lead to the slight deviations   in terms 

of the cable shape . Thus, we can define a local deformation model 

 (2) 

 

where is the jacobian-like matrix that represents the locally valid linear dependenci-

es between the change of the robots TCP configurations and cable shape, where is the size 

of shape representation, while  is the shape of TCPs configuration vector . 

 

In this work, since the visual feedback is provided with a single camera, we will be operating 

on the 2D plane perpendicular to the camera’s optical axis. Therefore, the TCPs configuration 

can be defined by 

[
 
 
 
 
 

]
 
 
 
 
 

 (3) 

 

where  and  denote the position in the task space of the robot’s TCPs in the vertical axis 

of the image plane for the first and second arm, respectively. Similarly,  describe the 

position in the horizontal axis, while  the rotation around the camera optical axis. As 

one can see, the other rotations and movement along the optical axis are not considered, as 

they could cause deformations that are not distinguishable using a single camera. While this 

seems to be some limitation of the proposed method, the usage of more than one camera, with 

optical axes pointing in different directions, can still lead to 3D bimanual manipulation. Ensu-

ring that each camera provides feedback only about the deformations clearly visible in the 

images it acquires, thus they constitute evidence to perform certain movements, leads to a re-

liable and safe manipulation. 
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Similarly, the shape of the cable is defined in an image space -- on a 2D plane. From the visu-

al feedback, we obtain a B-spline curve , whose shape corresponds with the actual shape of 

the cable. To use this for local cable modeling, we discretize this curve and obtain a sequence 

¯ of  equally distant points of the curve , which can be defined by 

¯ [ ( ) ( ) ( )]  (4) 

 

where ( ) is a point on the 2D image plane. 

 

 

Cable manipulation 

Having the model defined, we introduce three important procedures that lead to the bimanual 

cable manipulation: model identification, model update, and movement prediction. 

To manipulate the cable based on the local linear model, one has to first identify its parame-

ters before starting using it for the movement predictions. To do so, both arms are performing 

 specific movements during which the changes of configuration  and cable shape ¯ are 

gathered and stored. As a result, we obtain the matrix of configurations changes 

 and matrix of cable shape changes . Having these measurements, one 

can easily regress the value of  using the least-squares method 

 (5) 

 

Next, using the actual value of the  matrix, one can predict the movement of the arms ¯ , 

which according to the identified local model, will minimize the difference between the actual 

 and the desired cable shape , for . To do so, one has to calculate the diffe-

rence  and transform it using the local cable model into ¯  using the following 

formula 

¯  (6) 

 

However, this transformation because of the model locality can generally be invalid and lead 

far from the desired cable shape. Therefore, to take the model locality into account, we do not 

apply the ¯  movement directly but scale it to obtain some short local move. This ensures 

that we do not enter areas where our local model is no longer useful (it cannot predict the cab-

le behavior within some small neighborhood of the new configuration). 

 

To achieve the desired shape of DLO, a predicted TCPs transformation described as 
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¯

[
 
 
 
 
 
 

]
 
 
 
 
 
 

 (7) 

is taken under a scaling procedure required to perform movement sequence using partial 

transformation 

¯

[
 
 
 
 
 
 

]
 
 
 
 
 
 

 (8) 

 

With an initial ¯ the TCPs translation   and rotation are associated. The transforma-

tion of TCPs have to be calculated separately 

( )
 

( )
 

 

( )
 

( )
 

 

(9) 

where 
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√  

√  

 

( )  

( )  

 

(10) 

 

By processing consecutive movements towards desired DLO shape, the ¯  values change 

and are using as a scaling factor for the subsequent translation and rotation 

 

 

(11) 

where 

 

 
(12) 

 

After every move is performed, one can analyze the model’s accuracy and update it accordin-

gly using the information from the last movement. Check of the model prediction can be ma-

de with the following formula 

 (13) 

 

then the difference between  and measured  will inform us about the prediction er-

ror. This difference is an essential part of the model update, which we made using the recursi-

ve least squares method with  . The formula for updating the model is the following 

( )
 (14) 

 

where is a matrix that can be defined with the following recursive algorithm 

( )  (15) 

where assuming that is an identity matrix. 
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Thanks to this algorithm it is possible to update the model for every move robots make, thus 

obtaining a cable deformation model up to date and valid for the local neighborhood of the 

actual cable configuration. 

Frequent updates should allow for keeping local estimation of the model accurate enough to 

perform successful manipulation. However, because of measurement noises and the complica-

ted behavior of the cable, while being bend, the model may change significantly between ite-

rations in some situations. We expect that at the very beginning when the shape error  is 

high, the changes of the jacobian will be significant, whereas, at the neighborhood of the desi-

red shape, we expect that the cable deformation model will vary only a bit. Therefore, we ma-

de the value of the forgetting factor dependent on the ratio of actual  and initial  cable 

shape errors and describe its evolution with the following equation 

 (16) 

 

Algorithm 

To sum up, the complete algorithm we proposed for bimanual cable manipulation can be writ-

ten as follows: 

1. Perform predefined movements with both arms and store the resultant differences in 

robots configurations  and cable shapes  

2. Calculate the initial jacobian using (5) 

3. Start the manipulation sequence and set  

4. Using the actual jacobian  and the difference between actual and desired cable shape 

 calculate the predicted change of robots configurations ¯  that, according to the 

deformation model  is needed to deform the cable to the desired shape  using (6) 

5. Apply the scaling procedure (8-12) to ¯  to obtain the small movement ¯  towards 

the goal 

6. Perform the movements of robots according to the ¯  

7. Measure the shape of the deformed cable  

8. Calculate the cable shape  after ¯  move, predicted with the use of  and (13) 

9. Calculate  based on the cable shape prediction error  using RLS-  

algorithm (14, 15) 

10. Update the  using (16) 

11. Calculate the distance between actual and desired cable shape  using (1) 

12. Compare the actual with the  previous ones, and if there was no improve-

ment since  iterations, move the robots to the best-achieved configurations and stop 

the algorithm ( is a constant that can be chosen by the user). 
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13. Increment  and go to point 4. 

4 ROS node description 

ROS2 was used to deliver the described functionality (Figure 3). This allowed us to use a pre-

viously implemented algorithm for cable tracking, which uses the input image to generate a 

sequence of points describing the shape of the B-spline. A change within the B-spline 

is associated with each transformation  until the defined sequence of 

moves is completed. From such a data set, the model  necessary to predict movements to-

ward the target is estimated. After each predicted movement , the model is optimized for 

the next iteration using the resulting absolute error  between points of B-spline expected 

and B-spline achieved. This process is repeated until the algorithm is unable to minimize  

(which is an absolute error between points of B-spline goal and B-spline achieved) in a cer-

tain consecutive number of movements and defined as a condition that ends the algorithm. 

 

Figure 3: General scheme of implemented algorithm. 
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5 Experiments 

We experimentally evaluated the proposed bi-manual cable manipulation algorithm in a la-

boratory at Poznan University of Technology. Two UR3 arms, equipped with our own de-

signed grippers were manipulating the cable in front of the RealSense D435 camera, that was 

providing the visual feedback. To show the robustness of the proposed algorithm, we per-

formed the manipulation of a few different DLOs (different lengths, weights, stiffness). Also, 

we tested our approach in demanding situations, including occlusions and self-intersections. 

The results of the performed experiments are presented in the demonstrator movie
1
 and the 

figures below. 

 

 
                                                

1 http://intranet.remodel-project.eu/share/s/hv33dCNeSI2vaedvidu7lg 

Figure 4: Manipulation sequence for a thin cable subjected to some occlusions 

Figure 5: Manipulation sequence for a thick cable subjected to some occlusions 

http://intranet.remodel-project.eu/share/s/hv33dCNeSI2vaedvidu7lg
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6 Conclusions 

To sum up, we have prepared a ROS node
2
 that enables deforming a cable into the desired 

shape using two robotic arms holding it and visual feedback provided by a camera. The pre-

sented solution works on several different cables in demanding setups in our laboratory. 

However, it can be easily adapted to work on different hardware. 

 

 

 

 

 

 

 

 

 

 

 

                                                

2 https://dei-gitlab.dei.unibo.it/aszymko/putarms_jacobian/-/tree/2d 

Figure 6: Manipulation sequence for a medium thickness cable with a loop subjected to lar-

ger occlusions 

https://dei-gitlab.dei.unibo.it/aszymko/putarms_jacobian/-/tree/2d
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