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List of Abbreviations 

 

Acronym Meaning Explanation 

DLO(s) Deformable Linear Object(s) Highly deformable objects with an infinite amount of 
degrees of freedom, such as ropes, cables, wires, 
tubes, etc. 

NN Neural Network A method in artificial intelligence that processes a 
input datum based on a set of weights that were 
learned in advanced over a set of examples. 

CNN Convolutional Neural Network A type of Neural Network used for processing 2D 
data like images. 

CK Chroma Key A technique used to isolate a given color range from 
an image or video. 

IoU Intersection over Union Metric commonly used in image detection and 
segmentation to assess the accuracy of a solution 
or method. 

ReLU Rectified Linear Unit A popular activation function used in neural 
networks, which implements the function f(x) = 
max(x, 0) 
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1 Introduction 

 

The manufacturing processes involving Deformable Linear Objects (DLOs) like 

cables, hoses, and wiring harnesses are highly complex, presenting various 

challenges from two main perspectives: perception and manipulation. From a 

perception standpoint, dealing with DLOs is a tough task. Their ambiguity can make it 

difficult to distinguish different parts of them or to distinguish DLOs from other 

objects, especially given their relatively small size. Regarding manipulation, DLOs 

pose a formidable obstacle due to their unpredictable configuration behavior, 

necessitating a deep understanding of their physical characteristics to predict and 

control their shape. DLO manufacturing processes typically occur in a human-only 

setting, since, considering the challenges mentioned, nowadays it is more practical to 

rely directly on human expertise rather than on robotic systems.  

In the deliverable D4.3 Real-Time Cable Detection and Tracking, we presented a 

couple of solutions to robustly detect and track DLOs in a real-time manner. 

However, D4.3 is addressing only the perception challenges.   

Therefore, the purpose of this deliverable is to present and demonstrate solutions 

where the perception of the DLOs is exploited in a complex robotic system to 

accomplish difficult tasks. The deliverable presents two main tasks: efficient labeling 

of real-world DLOs images; DLOs manipulation planning. 

The first task addresses the problem emerging with recent deep-learning methods 

requesting huge datasets for their optimization. Images of DLOs require an 

enormous human effort for their labeling due to the intrinsic peculiarities of DLOs. 

Synthetic approaches can be employed to avoid this tedious task, but they introduce 

other difficulties like synthetic to real gap. Thus, being able to label real-world images 

of DLOs efficiently is a big benefit. The efficiency is accomplished by an interaction 

between a human operator, annotating just a few points along a DLO, and a 

perception system, able to extrapolate fully dense and precise labels starting from 

the operator input. This approach is presented in detail in Sec. 2. 

DLOs manipulation planning is a complex task, where simple approaches commonly 

used for rigid objects do not apply effectively because of the mentioned challenges 

concerning DLOs manipulation behavior. In this deliverable, a framework combining 

the perception system and the manipulation system is exploited to improve the 

manipulation capabilities. The goal of the manipulation planning framework is 

estimating manipulation actions able to steer the DLO from its initial to a final target 

configuration. This framework is detailed in Sec. 3. 
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2 Weakly Supervised Annotation of DLOs 

Existing data-driven approaches, in real-world applications, are still massively 

affected by the quality and size of the datasets. Although some works have already 

addressed the problem of generation of data (for instance employing the CK 

method1), there are no methods that have dealt efficiently with real images. Indeed, 

the problem of employing real images in data-driven approaches concerns the 

annotation phase. A tedious and long labeling process is required, where the 

utilization of human work is not efficient. This section describes an approach 

developed to tackle the efficient labeling of real-world data by exploiting an 

interactive approach. A more detailed discussion is available in the associated 

publication2. 

To enable a more efficient labeling of DLOs in a real environment, an interactive 

approach making use of an infrared tracker system is exploited. The idea is to have a 

human operator annotating only keypoints along the DLOs in the workspace scene. 

Then, a robotic arm with a camera mounted on the gripper is used to collect a huge 

set of images of the annotation scene. Finally, by means of the knowledge of the 

camera location, each image is properly annotated with the collected initial keypoints.  

The generated image labels are corrected to account for possible calibration and 

user input errors exploiting a CNN specifically developed. Finally, the keypoints 

labels are converted to dense pixel-wise masks. For brevity, the proposed method is 

denoted as DLO-WSL standing for DLO Weakly Supervised Labeling. Figure 1 

schematizes the proposed approach.  

The labeling of the DLOs instances via an infrared tracker approach is detailed in 

Sec. 2.1. The recording of the set of images is outlined in Sec. 2.2. The projection of 

the labeled keypoints in each image sample is described in Sec. 2.3 and the 

correction and mask generation procedures are presented in Sec. 2.4. Finally, in 

Sec. 2.5 the experimental validation of the proposed approach is reported. 

 

2.1 Infrared Tracker Labeling 

A methodology involving a sensor tracked in space is selected to label instances of 

DLOs. The Tracepen device is selected. It works on the basis of reflective 

photodiode sensors which, by receiving and mirroring an infrared signal, enable the 

calculation of the sensor's pose from the emitting station. Due to this working 

 

1
 R. Zanella, A. Caporali, K. Tadaka, D. De Gregorio and G. Palli, "Auto-generated Wires Dataset for 

Semantic Segmentation with Domain-Independence," International Conference on Computer, Control 

and Robotics (ICCCR), 2021 
2
 A. Caporali, M. Pantano, L. Janisch, D. Regulin, G. Palli and D. Lee, "A Weakly Supervised Semi-

Automatic Image Labeling Approach for Deformable Linear Objects," in IEEE Robotics and 

Automation Letters 2023 
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principle, the coordinates of the tracker are expressed in reference to the emitting 

station. However, to obtain DLOs instance labels for the images, such positions had 

to be transformed in camera pixel coordinates. To solve this issue, homogeneous 

transformations between the emitting station and the camera position had to be 

considered. Hence, the transformation between the emitting station and the robot is 

calculated to obtain tracker points in the robot coordinate frame. 

 

 

Figure 1: The DLO-WSL approach. 

 

2.2 Recording of Images with a Robot 

To create a dataset via DLO-WSL, images along with the position of the camera in 

the world coordinate system are needed. Therefore, a 2D RGB camera is mounted 

on the flange of a robotic arm in an eye-in-hand configuration for a two-fold benefit. 

First, the recording of several images is achieved in a matter of seconds. Second, the 

position of the camera is known as long mechanically connected to the robot. A robot 

trajectory with an ellipsoidal shape is integrated into the robot control to ensure that 

the images taken by an inward-facing camera had always the object at the center of 

the trajectory. This trajectory is calculated as: 

 

where x, y, z are the trajectory points, a, b, c are the ellipsoid parameters, θ is the 

zenith angle, ϕ is the azimuth angle, and x0, y0, z0 are the coordinates of the initial 

position. 
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2.3 Projection Keypoints  

The collected DLOs labels are expressed in the 3D cartesian frame of the robot. 

They are projected in the 2D images to generate training data labels. This is 

achieved through the following equation:  

 

where u, v are pixel coordinates, w′ is the scaling factor, K is the intrinsic camera 

matrix obtained via camera calibration, rTc is the transformation from robot to camera, 

[x, y, z] is the 3D point which needs to be projected, and u = u ′/w′ and v = v′/w′. 

With this approach, images of real-world scenarios with different camera positions 

can be labeled using a single initial labeling input. This procedure is repeated for 

each DLO instance to label. 

 

2.4 Correction Procedure 

Unlike synthetic labeling, which is inherently error-free, during the labeling of real-

world DLOs performed by a human operator, some level of error is expected. In 

particular, the major sources of errors are due to inaccuracies in 1) the calibration of 

the annotation tool and/or eye-in-hand camera; 2) the labeling performed by the 

human operator. The presence of errors is more evident and severe especially on 

very thin DLOs.  

To overcome these problems, a fine-tuning step is applied after the human input to 

each labeled DLO instance, its main stages are shown in Figure 2. 

 

Figure 2: Correction procedure developed within DLO-WSL. 

First, the labeling points of one DLO instance are smoothed employing an 

approximating spline curve in the 2D pixel space. Then, an approach based on a 
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CNN is applied for computing a correction offset for each labeled point. The CNN-

based network performs the computation illustrated in Figure 3. 

 

Figure 3: CNN-based corrector employed in DLO-WSL. 

Given the source image, the vertically oriented crop extracted around the considered 

labeled point is extracted. With vertically oriented, we denote the condition with the 

DLO having an almost vertical shape. Thus, the CNN-based network approximates 

the location of the DLO in the image along the horizontal axis. In other words, the 

probability of each image column of corresponding to the DLO centerline is computed 

and the peak of the obtained curve selected as DLO center.  

Having corrected the points, the knowledge of the DLO thickness is exploited to 

construct a polygon that precisely follows the contour of the targeted DLO in each 

image plane. Thereafter, from the polygon, an instance mask can be easily drawn, as 

shown on the right-hand side of Figure 2. 

 

2.5 Experiments 

To evaluate the capabilities of the proposed DLO-WSL, a user test with a balanced 

randomized order of three subsequent interactions was envisioned. Since no labeling 

method exists for big datasets which requires labeling for only one image with 

uneven backgrounds, the comparison is done against the CK technique for its 

adequacy to generate multi-image datasets with single human intervention in even 

backgrounds, and RITM3 due to its good performance in state-of-the-art single image 

weakly supervised labeling.  

For these comparisons, the users were requested to label 10 images with the three 

different methods. At the end of each interaction, usability and workload were 

measured through the System Usability Scale (SUS)4 and the NASA-TLX5 

Additionally, the number of clicks (NoC) to complete the labeling task was also 

recorded. A total of 13 users, not experienced with labeling techniques, age mean 

 

3
K. Sofiiuk, I. A. Petrov, and A. Konushin, “Reviving iterative training 

with mask guidance for interactive segmentation,” in 2022 IEEE Inter- 

national Conference on Image Processing (ICIP). 
4
 J. Brooke, SUS - A quick and dirty usability scale. CRC Press, 1996. 

5
 S. G. Hart and L. E. Staveland, Development of NASA-TLX (Task Load Index): Results of Empirical 

and Theoretical Research. Elsevier, 1988. 
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(M) = 32.70 years, standard deviation (SD) = 9.23, participated in the study. All of 

them performed the test correctly and no data was discarded.  

Concerning the usability, the score for CK is M=60.38%, SD=21.00, for DLO-WSL is 

M=69.61%, SD=16.26, and for RITM is M=82.30%, SD=9.54. From a statistical 

standpoint, it is possible to conclude that the usability of DLO-WSL is good and 

comparable to CK and RITM. Regarding perceived effort, the score for CK is 

M=30.51%, SD=15.08, DLO-WSL is M=29.74%, SD=12.96, and for RITM is 

M=22.31%, SD=13.12. Thus, it is possible to conclude that the workload perceived in 

using DLO-WSL is comparable to the other methods. In Figure 4 a boxplot illustrating 

both the usability and effort results is provided. 

Finally, to examine the performances of labeling, the average IoU and IoU over the 

average Number of Clicks (NoC) for the dataset of 10 images are used. The results 

are shown in Figure 5. More precisely, IoU scores were M=91.68% SD=6.56 for CK, 

M=91.32% SD=1.52 for RITM, M=81.05% SD=6.22 for DLO-WSL and M=36.88% 

SD=12.45 for spline. IoU/NoC scores were M=15.31%/clicks SD=1.09 for CK, 

M=6.54% SD=2.78 for DLO-WSL, M=3.16%/clicks SD=2.05 for spline and 

M=0.21%/clicks SD=0.13 for RITM. Thus, DLO-WSL obtains a good average IoU 

while minimizing the number of clicks for uneven backgrounds. 

 

 

Figure 4: In (a) usability measure with the SUS scale, the higher the better. In (b) workload measure 

with the NASA TLX, the lower the better. The comparison is established between chroma-key (CK), 

RITM and DLO-WSL. 
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Figure 5: Evaluation of the performances in terms of semantic segmentation and number of clicks for 

the labeling approaches. The segmentation reports the outcomes with chroma-key (CK), RITM, DLO-

WSL and raw data from the user (without the CNN correction) fitted with a spline (SPL). 

 

3 Manipulation Planning via Interactive Perception 

In this section, perception and manipulation are combined into a unified framework 

where perception, done during manipulation, helps to improve the manipulation 

capabilities of a robotic system. In particular, the DLO behavior is approximated via a 

model predicting the DLO shape after a manipulation action. The model prediction is 

conditioned over a set of physical parameters of the DLO (e.g., mass, bending 

elasticity, etc.). 

Thus, the perception system is responsible for providing accurate detections of the 

DLO shape such that: 1) the physical parameters can be estimated via an 

optimization process performed on the model; 2) the model can be initialized with 

accurate initial conditions of the DLO shape, and an effective manipulation action can 

be predicted by the model.  

The introduced model can be either an analytical model obtained as a set of 

differential equations, or a specialized NN designed to approximate the analytical 

model. Indeed, NNs are known to be universal function approximators given a proper 

set of training data to be optimized against. Nevertheless, the presence of the model 

is crucial as it enables exploring possible manipulation actions and selecting the best 

one to achieve a desired final configuration of the DLO.  

Therefore, an interactive framework between perception and manipulation originates. 

The overall method comprises four main elements, which are:  

 Perception system;  

 DLO analytical model;  

 DLO neural network model;  

 Manipulation system. 
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Figure 6: Interactive perception framework. 

 

As depicted in Figure 6, the framework exploits two different phases, namely a 

training phase and an online phase. In the first the DLO analytical model is used for 

the generation of a training dataset which is employed to optimize the weights of the 

NN model.  

In the online phase, only the DLO NN model is utilized. This choice comes from 

computation-related reasons: the analytical model requires careful choices of 

integration time and simulation steps that heavily affect the model performances. 

Instead, the NN model conditioned over a wide range of meaningful set of physical 

parameters and initial/target DLO shapes, can accurately approximate the analytical 

model while gaining a significant boost in processing time. This improved efficiency 

allows the utilization of the NN model in the online phase. 

 

In the online phase, the DLO NN model is responsible for accomplishing two main 

tasks: 

 Physical parameters estimation; 

 Best manipulation action estimation. 

 

The first consists of estimating the physical parameters of the DLO affecting the final 

prediction. The latter is related to the estimation of the best possible action to be 

performed via a robotic arm (the manipulation system) toward a target DLO shape 

configuration.  

 

In the rest of this document, the perception system, DLO analytical model and DLO 

NN model are analyzed in Secs. 3.1, 3.2 and 3.3 respectively. The estimation tasks 

are instead presented in Sec. 3.4. Finally, Sec. 3.5 discusses the obtained 

experimental results. 

 

3.1 DLO Perception 
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The perception of the DLO is accomplished exploiting the results achieved in the 

Deliverable 4.3 and published as journal paper6 with an algorithm named RT-DLO 

(see Figure 7).  

 

Figure 7: The RT-DLO algorithm employed for the DLOs perception 

A Photoneo Motioncam3D sensor is statically mounted on a robotic cell providing 

point-cloud data. The plane characterizing the workspace is easily segmented from 

the cloud obtaining all the points describing the DLO. The points are projected on the 

image plane by utilizing the camera's intrinsic parameters d a binary mask of the 

DLO is obtained. In the mask, the pixels belonging to the DLO have a value of 1, 

while all the others have a value of 0. The binary mask is forwarded to RT-DLO that 

performs the segmentation and modelling of each DLO instance present in the 

scene. Each DLO is modelled as a sequence of nodes and vertices, effectively 

obtaining as output a line graph representation of the DLO as shown in Figure 8. 

 

Figure 8: Detected DLO described as a line graph obtained from a binary mask. 

The line graph characterization of the DLOs is thus exploited by the mathematical 

DLO analytical model and neural networks model, as detailed in Secs. 3.2 and 3.3. 

 

3.2 DLO Model 

A DLO is physically modeled via masses and springs. Considering the output of the 

perception pipeline, a point mass is placed at every node location while the edges 

between the nodes are replaced by springs. These springs are used to model the 

axial effects of DLOs. In addition to point masses and axial springs, also the bending 

 

6
 A. Caporali, K. Galassi, B. L. Žagar, R. Zanella, G. Palli and A. C. Knoll, "RT-DLO: Real-Time Deformable 

Linear Objects Instance Segmentation," in IEEE Transactions on Industrial Informatics, 2023. 
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effect is modeled by placing a torsional spring at each node.  

The mathematical model is thus a set of point masses connected by axial and 

torsional springs. To better simulate the DLO behavior, the model is augmented with 

a damping term. The damping term is modeled as a viscous friction force 

proportional to the velocity of the point mass. 

An illustration of the masses and springs insertion from the line graph is shown in 

Figure 9. For a sample node i, its mass is denoted by mi while the axial and torsional 

springs have constants ks and kb respectively. 

 

Figure 9: DLO model with masses, axial spring and torsional springs. 

 

 

 

The motion law of the mass points i can be determined by Newton's second law as: 

 

where pi is the node coordinates, kd a damping constant, fi
s the force due to the axial 

effects and fi
b the forces due to the bending effects. The axial effects are computed 

as: 

 

where li and li
0 are the current and initial lengths of link i respectively. With ui the unit 

vector of node i is denoted. The bending effects are computed as: 
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where: 

 

is the angle between link i and i+1.  

In Figure 10 the bending computation schematic is illustrated via a geometry 

description of a DLO portion. 

 

 

Figure 10: Geometry of a section of a DLO. 

 

The goal of the DLO model is to predict the future position of the DLO nodes given a 

manipulation action. It is assumed that a pick and place action takes place 

somewhere on the DLO. The action is assumed to be confined on the plane and it is 

described by the following parameters: edge index, edge x-coordinate displacement, 

edge y-coordinate displacement and edge z-axis rotation angle differenece. Indeed, 

since the DLO is modeled as a line graph, the action is described by the edge index 

where the action takes place and the displacement subject by the edge from its initial 

configuration. The choice of performing the action at the edge level and not on the 

individual node is motivated by the fact that the action is performed by a gripper that, 

during the grasp, interacts with the DLO on a given section that is better described by 

an edge rather than by a point mass node. 
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3.3 Neural Network Model 

A neural network is employed to approximate the DLO model and gain a significant 

boost in terms of computational efficiency. Indeed, the DLO model complexity affects 

performances making its utilization in an online framework challenging. Instead, a 

neural network can exploit a dataset generated offline by the DLO model to 

accurately approximate it while effectively improving the time performance by order 

of magnitude. 

Thus, utilizing the DLO model, a dataset of DLO motions is generated and collected 

as detailed in Section 3.3.1. Thereafter, a neural network, having the structure 

defined in Section 3.3.2, is trained as detailed in Section 3.3.3. 

 

3.3.1 Dataset Generation 

The dataset to be used for the training of the neural network is generated by 

simulating the DLO model performing a set of random actions. The dataset consists 

of the following quantities that are obtained by the DLO model and saved: DLO initial 

configuration, DLO final configuration, action commanded, and physical parameters.  

The DLO initial and final configuration is just the set of 2D locations on the cartesian 

space of the nodes constituting the DLO. Thus, assuming that the DLO is modelled 

by n nodes, each shape has dimensions . 

The action is described by the same parameters of Sec. 3.2, namely the edge index 

(where the action takes place) and the motion offset (along x and y axis, rotation on 

the z axis). 

Finally, the physical parameters specify the type of behavior achieved by the DLO 

model. These parameters are: the damping term Kd, the bending term Kb, the length 

of the DLO, and the mass of the DLO. Both the length and the mass are assumed to 

be known quantities since they can be usually measured. The other two terms are 

instead more difficult to measure and should be estimated in alternative ways.  

Accounting for the selection of the physical parameters, the set of values assigned to 

the 4 parameters are sampled from a uniform distribution. The range of the 

distribution is selected to cover the entire range of possible meaningful values. Thus, 

the damping term (Kd) is selected from the range (1, 30) while the bending term (Kb) 

from the range (0.05, 1.5). The length is specified between 15 and 50 centimeters. 

The mass is confined between 10 and 100 grams. 

Having specified the parameters and sampled a random initial configuration, it is now 

required to sample a random action to be commanded to the DLO. Thus, a random 

edge index is selected specifying the location of actuation. Thereafter, given a 
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minimum and maximum range of displacement and an action direction, the linear 

displacement variable (x, y) are computed. Finally, a random value for the angular 

action is sampled from a uniform distribution as well. Thus, the combined action is 

commanded to the mathematical model. The displacement range is set to be 

between 5 and 10 centimeters while the action direction angle range is set to be 

within 90 degrees. 

The mathematical model is simulated for a fixed number of simulation steps and the 

final configuration reached by the DLO is saved. An example of a data sample 

contained in the generated dataset is illustrated in Figure 11. 

 

Figure 11: Simulation of a DLO manipulation performed at edge index 7 

with displacement (0.025, 0.05) m and rotation 30 degrees. 

 

3.3.2 Network architecture 

The neural network architecture is based on a set of Linear layers followed by ReLU 

activation functions. The input of the network is the initial configuration of the DLO, 

the action parameters, and the DLO’s physical parameters. The output of the network 

is a sequence of predicted changes of the 2D DLO coordinates between the initial 

and final configuration of the DLO.  

The network is composed of four main blocks: 1) the action block, 2) the physical 

parameters block, 3) the DLO block, and 4) the prediction block. 

In Figure 12 the architecture of the network is shown. 
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Figure 12: Neural network structure 

 

3.3.3 Network training and error metrics 

The network is trained to minimize the mean squared error between the predicted 

and the ground truth change between the initial and final configuration. 

In Figure 13 a plot describing the training progress over time is shown. The neural 

network is able to capture the DLO dynamics simulated by the model reaching a final 

error on the validation set of less than 2 millimeters. 

As error metric, the point-to-point distance between the target DLO configuration and 

the predicted one is employed. 

 

 

Figure 13: Train and validation loss of the neural network. The dashed grey line indicates the location 

of the minimum validation loss. 

 

 

3.4 Exploiting the Neural Network for Prediction 

In order to properly predict the future configuration of the DLO, estimates close to the 

real physical parameters of the DLO are needed. Indeed, the physical parameters 

condition directly the DLO behavior and thus the predicted configuration. The trained 
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Neural Network DLO Model can thus be employed to accomplish different tasks 

based on which input/outputs setup is used, as described by Figure 14.  

In particular, the two important processes exploited are: the estimation of the real 

physical parameters of the DLO that is presented in more details in Sec. 3.4.1; the 

estimation of the action to be performed in order to achieve the desired target 

configuration, described in Sec. 3.4.2.  

 

 

Figure 14: Action and parameters estimation from the point of view of the DLO model input/output. 

 

3.4.1 Physical Parameters Estimation 

The proposed approach to modeling the DLO behavior using a neural network 

enables us to easily estimate the parameters of the DLO. In particular, there are two 

simple methods to do so: 1) using forward pass, and 2) using backward pass through 

the network. The first method consists of repeatedly asking the NN-based DLO 

model about the result of applying a given action to the DLO with different sets of 

parameters and comparing these results with the actual DLO displacement. Thanks 

to the short time of the neural network inference, even such a trivial approach can be 

effective if the set of parameters is sufficiently small (which is true in the considered 

case). A more sophisticated approach to the problem of estimation of the physical 

parameters is to exploit the innate differentiability of the considered neural network, 

and instead of taking the gradient with respect to the weights of the neural network 

as it is done during the training, one can differentiate the prediction error with respect 

to physical parameters, and update them based on this gradient. By updating these 

parameters repetitively, it is possible to reach a stable minimum of the loss, and thus 

find the set of the parameters that explains the observations the best. 

The approaches described above, thanks to the native parallelism of the neural 

network inference and back-propagation, enable fast parameter estimation not only 

for a single observation but also for a batch of experiments. By applying estimation to 
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a batch of action-observation pairs one can estimate parameter values much more 

reliably without significant overhead. 

 

3.4.2 Best Action Estimation 

In the previous section, we introduced a way of utilizing the trained neural network to 

estimate the parameters of the DLO. Having the set of parameters already estimated, 

one can use a similar approach to estimate the best action. In this case, the idea is to 

find an action that minimizes the error between the predicted state of the DLO and 

the desired one. 

In the considered approach, the action consists not only of the continuous part, which 

may be easily adapted using the gradient of the aforementioned error but also of the 

integer value of the node to which the action is applied. To handle this type of 

variable, we once again relied on the ability of the neural networks to be easily 

parallelized and simply performed n-1 independent optimizations, where n is a 

number of the vertices of the DLO representation, and we choose the action that 

resulted in the smallest difference between the prediction and the desired DLO state. 

 

3.5 Experiments 

The experiments have been carried out to assess the capabilities of the proposed 

framework. Two ropes with similar material and different lengths (30 and 44 cm) are 

used. Each experiment is initiated with the rope placed in a straight configuration. 

The goal is to reach a target configuration in a given amount of manipulation steps 

(or trials). Since the NN model is conditioned over the DLO parameters (Kb, Kd and 

mass), prior to the manipulation sequence a parameters estimation phase is 

exploited for computing the damping and bending coefficients. The mass is instead 

provided directly by measuring the DLO. 

The parameters and action estimations are computed employing the methodology 

discussed in Sec. 3.4. 

 

3.5.1 Parameters Estimation 

The parameters are estimated by collecting 5 random manipulation actions on each 

rope. Thus, to the NN model, the following quantities are forwarded: initial DLO 

configuration, final DLO configuration, action performed. Additionally, the mass of the 

DLO is measured and provided directly. The NN optimizes the damping and bending 

coefficients to reduce the overall loss between the predicted NN shape of the DLO 

and the final shape reached by the real system. 
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In Figure 15 and Figure 16 are depicted the plots of the coefficients and loss curves 

for the two ropes. From the plots it is clear that in both cases the coefficients 

converge, and the overall loss is reduced. In Table 1, the estimated values are 

provided. 

Table 1: Estimated parameters for the two ropes. 

 Kd Kb 

Rope 30 cm 8.74 0.11 

Rope 44 cm 8.95 0.10 

 

 

 

Figure 15: Parameters estimation for 30 cm rope. 

 

 

Figure 16: Parameters estimation for 44 cm rope. 

 

 

 

3.5.2 Action Estimation 

Given the estimated parameters, the experiments related to the manipulation 

sequence aiming at reaching the final target configuration are shown here.  
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To better analyze the behavior of the NN in predicting the action to be performed, 

different values of parameters are employed. In particular, a comparison between the 

best (the ones estimated) and mid (the ones in the middle of the considered 

parameter ranges) is established. The mid parameters are set to: Kd equals to 15, 

Kb equals to 0.75. 

As target shapes, the “I”, “L”, “S” and “U” configurations are considered. From Figure 

17 to Figure 20 are shown the results for the 44 cm case. Instead, from Figure 21 to 

Figure 24 are depicted the results for the 30 cm case. 

The NN with the best parameters shows both a better progression toward the final 

goal and a faster convergence toward smaller errors. This is noticeable more on the 

44 cm rope rather than the shorter 30 cm one, as expected due to the longer shape 

and thus bigger differences. 

 

 

Figure 17: Reaching "I" shape with a 44 cm long rope. 

 

 

Figure 18: Reaching "L" shape with a 44 cm long rope. 

 

Figure 19: Reaching "S" shape with a 44 cm long rope. 
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Figure 20: Reaching "U" shape with a 44 cm long rope. 

 

 

Figure 21: Reaching "I" shape with a 30 cm long rope. 

 

 

Figure 22: Reaching "L" shape with a 30 cm long rope. 

 

Figure 23: Reaching "S" shape with a 30 cm long rope. 
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Figure 24: Reaching "U" shape with a 30 cm long rope. 

 

 

 

 

4 Summary 

 

In this deliverable several solutions were presented concerning the exploitation of the 

perception of DLOs in an interactive fashion for accomplishing different tasks like 

efficient labelling of real-world images or best manipulation action planning. The 

efficient labelling technique proves to be effective compared to existing approaches. 

The best manipulation action planning involves the contribution of several systems 

along the perception one, demonstrating the challenges involved with DLOs 

manipulation. Nevertheless, the experiments demonstrated the capabilities of the 

proposed framework in achieving different target shapes with DLO of different 

lengths. 

 

 

 

 

 


