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1. TASK DESCRIPTION: T3.3  TEACHING BY DEMONSTRATION OF SKILLS FOR NEW ASSEMBLY 

REFERENCES AND TASKS 

Leader: TECNALIA; Participants: UNIBO, TAU, TUM, PUT  

The robot will be programed using a skill-based system. Some skills are preprogramed in 

the robot and new skills can be created from the combination of already existing ones. This 

ability is particularly useful since in most of the cases the manufacturing tasks are not fully 

coded in the product design. This is the case of wiring harness manufacturing or assembly, in 

which even though the shape of the final product is given by the design, the sequence and the 

manipulation tasks to achieve the final product are managed entirely by the operator that 

manufactures the product itself, usually driven by its personal experience and by the 

requirement of the subsequent operations along the task. TECNALIA has already developed a 

skill-based system that will be used as a basis for this task. In order to execute the operations 

by the robot, and based on the developments implemented in tasks T3.1 and T3.2, the 

different skill-instances need to be combined and transformed into an executable program for 

the robot system. This will be performed through an easy programming framework in which 

the operator will teach by demonstration the robot by indicating some key positions and 

trajectories in order to do the parameterization of the different skill instances and adapt itself 

to each harness model. The key parameters need to be identified in each skill program and 

their variability from one harness model to another needs to be studied and evaluated. This 
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approach enables a large adaption to different kinds of products in an easy and rapid manner 

necessitating few programming efforts.  

To TRL 4: A first evaluation consisting in simulating the execution of skills (assembly of 

PINs, positioning of cables and key components on the manufacturing table) getting the cable 

assembly process key info from CAD (task 3.1) will be done. The parameters that are variable 

for the assembly of one harness to another are identified in the program as parameters that the 

operator can teach the robot; also, the parameter that could ease the assembly task. This 

includes information such as cable characteristics (colors, lengths…) and connector’s 

information. Then the assembly sequence must be generated through a specific HMI of the 

CAD software, selecting the different components and clicking where to assemble them  

To TRL 5: During this step, there is a concrete execution and implementation of the 

skills on an experimental platform. This implies the export of key data to the robot controller. 

The good execution of the sequence relies on the robot ability to locate the different cables, 

generate correct trajectories, and decide on end-effector tool changing if necessary. The robot 

should be provided in this case with a certain degree of autonomy in order to change and 

adapt its assembly plan when needed in order to successfully achieve the task. Safety 

strategies will be implemented when the robot human distance becomes too close. During this 

step, operators will test in a laboratory environment different teach by demonstration 

strategies in order to evaluate their intuitiveness.   

To TRL 6: Different scenarios and tests corresponding to the selected use case will be 

validated and experimentally tested. The operator should be able to teach the robot new skills 

in a HW/SW environment that correspond to the use case requirements. The ability to 

automatically generate a skill network to execute a task by combining available skill instances 

will be evaluated. 

2. INTRODUCTION 

Task T3.3 aims to develop tools to assist operators in the creation of robot programs and 

skills using the Teaching-by-Demonstration paradigm. The main idea is to offer an intuitive 

way to program robots to inexperienced operators as in many cases programs need to be 

adapted and reconfigured, especially in complex scenarios such as the ones tackled in 

REMODEL. To this end, the Teaching-by-Demonstration paradigm enables the creation of 

new skills or program parts intuitively, guiding the robot directly to the desired points. 

Therefore, a Teaching-by-Demonstration framework has been implemented in Task T3.3 

based on kinesthetic teaching, where operators can guide manually the robot and create new 

movement sequences using a User Interface to interact with the system. Even so, during the 

application of this paradigm in the project's use cases, several limitations have been identified 

due to some particularities of the DLO manipulation and the scenarios. Accordingly, several 

additional developments and experiments have been carried out in an attempt to overcome the 

classical Teaching-by-Demonstration: 
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• An enhanced Teaching-by-Demonstration has been investigated, extending 

kinesthetic teaching with the use of a 6D joystick and an EMG (Electromyography) 

sensor. 

• Semantic teaching is also proposed to work on a higher level of programming, 

overcoming the classical trajectory teaching approach. 

The next sections will describe the Teaching-by-Demonstration framework developed 

within task T3.3, as well as the additional developments that try to overcome and enhance 

classical teaching. 

3. TEACHING-BY-DEMONSTRATION FRAMEWORK 

Initially, the main goal was the development of a Teaching-by-Demonstration framework 

to teach trajectories to the robot focused on common tasks of the project such as the routing of 

cables. Although there are tools developed within the project (task T3.1) that make use of the 

CAD designs of the switchgear or wire harnesses for the trajectory generation, there are some 

cases where operators need to generate robot programs for some specific situations (e.g. 

changes in the design or extra actions on the manufacturing). Therefore, it is mandatory to 

offer simple and intuitive tools to generate new trajectories for non-expert operators. 

After analyzing the current Teaching-by-Demonstration tools offered by robot 

manufacturers, the majority rely on a simple approach where operators need to guide the 

robot to the main task points (e.g. part grasping and release points) and record these positions. 

Even so, the cable routing process requires the recording of a huge number of points to 

reproduce precisely the path to carry out a suitable routing. Therefore, to offer a proper tool 

for the scenarios posed on the REMODEL project, the Teaching-by-Demonstration 

framework focuses on the following aspects: 

• Continuous data acquisition for a precise replication of the routing movements 

• Intuitive User Interface to interact with the system 

• Capability to record and reproduce trajectories 

• Capability to adapt to changes in robot setup such as the robot's tool TCP 

Based on these specifications, a ROS-based framework has been designed and 

implemented based on the kinesthetic teaching paradigm. Initially, for the data acquisition 

phase, Figure 1 represents the schema of the framework, which includes the following modules: 
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Figure 1 - Data acquisition schema 

• Robot State Recorder: Central module in charge of recording the robot data. Based 

on the input commands received from the User Interface, the module can activate the 

gravity compensation through the robot driver and store the robot information on the 

database. Additionally, the module can manage additional information such as 

trajectory data or tool information. 

• Database: This module implements an SQL database storing information about robot 

points (joint and Cartesian space), trajectories, and tools. Additionally, the module 

offers different ROS services to access the stored data. 

• Teaching Data Client: The robot includes a driver with a data client that waits for 

connections from external devices (the ROS PC in this case). Once the connection is 

established, the module can activate/deactivate the gravity compensation mode and 

stream robot data with a frequency of up to 50Hz (although the standard data 

acquisition frequency is set to 10Hz). 

• Cartesian Trajectory Analyser: This module offers different functionalities to 

manage and modify the Cartesian trajectories stored in the database. Specifically, it 

includes queries to downsample the trajectories (reduce the point volume) as well as 

filters to modify the trajectories' initial and final points. 

• User Interface: The user interface, implemented in HTML5, offers a web interface to 

activate and use the different functionalities of the presented tool. The interface can be 

displayed and used in any web browser, allowing its use on PC as well as in portable 

devices such as a tablet. 

The presented framework allows the recording of robot trajectories with a standard 

frequency of 10Hz, which has been found as sufficient for the posed application. To facilitate 
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the recording process, the user interface offers an intuitive teaching process following the next 

sequence: 

1. Start the teaching process, defining the specific tool attached to the robot and the 

specific robot arm (in dual-arm configurations). Additionally, the system also allows 

to define the camera attached to the robot although it is not used in the current version 

of the development. When the “start teaching” button is pushed, the gravity 

compensation mode of the selected robot arm is activated. 

 

2. Once the robot is in gravity compensation, the operator can guide the robot to the 

initial trajectory pose and start the data recording. 

 

3. During the trajectory recording, operators can insert a relevant pose at any moment, 

indicating if there is any specific action to carry out (e.g. gripper 

activation/deactivation). The system allows adding extra "relevant pose tags", opening 

the doors to new applications in the future with new requirements and functionalities. 
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4. Finally, the operator can visualize the taught trajectory to verify the acquired data. 

 

Once the trajectories are recorded, the execution process makes use of a similar 

architecture although it includes several new modules, as shown in Figure 2. Specifically, the 

execution framework includes the next modules: 

 

Figure 2 - Trajectory execution schema 



 
 

 

       8 

 

 

• Robot State Recorder: Central module offering trajectory execution services. 

Initially, the trajectory points and tool data are retrieved from the database and are 

handled by the Robot Skill Manager for its execution. 

• Database: The module offers different ROS services to access the stored trajecotry 

and tool data. 

• Robot Skill Manager: This module receives the raw trajectory data, as well as the 

tool information to execute the trajectory in the selected robot. Initially, the module 

performs the required geometric transformations to ensure that the selected tool 

follows the recorded path. Afterwards, the calculated path is handled by the Cartesian 

Trajectory Planner to check if there is any valid robot trajectory in joint space. 

Finally, the plan is sent to the robot to be executed. 

• Cartesian Trajectory Planner: This module generates a trajectory plan in joint space 

based on the provided Cartesian path. It makes use of the Descartes capability offered 

by MoveIt! package. 

• User Interface: The user interface, implemented in HTML5, offers a web interface to 

execute the stored trajectories. This interface is intended for testing and validation 

purposes, allowing to define the trajecotry number, robot arm, tool, speed and 

additional control parameters. 

 

 

These previous paragraphs summarize the Teaching-by-Demonstration framework 

defined for REMODEL, including both the trajectory recording and execution phases. 

4. ENHANCED TEACHING-BY-DEMONSTRATION 

After the initial implementation of the Teaching-by-Demonstration framework, the 

application was tested for the cable routing task, a common job within the REMODEL project 

(Figure 3). During its use, three main drawbacks have been identified: 
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Figure 3 - Kinesthetic teaching in wire harness manufacturing scenario 

• Kinesthetic teaching offers an intuitive way to guide and program robots, as operators 

only need to grasp the robot's tool to move it around the workbench. Even so, as the 

gravity compensation works so fluidly, it is complex to guide the robot describing 

simple and straight lines. These linear movements, in some cases, would be the 

optimal path to reach the target pose, as well as the most understandable and intuitive 

robot movements. In many cases, operators pointed out after the teaching phase that 

the obtained robot trajectory was a bit erratic and that they would like to repeat the 

teaching to obtain a cleaner trajectory. Therefore, it seems necessary to introduce ways 

to teach these clean and understandable trajectories. 

• Additionally, in various scenarios posed in REMODEL there is little space in the robot 

setup to carry out proper kinesthetic teaching. For example, in the switchgear 

assembly setup, the dual arm setup with both robots around the device makes it too 

difficult to grasp the tool and guide it along the routing paths due to the lack of space. 

In the case of wire harness manufacturing, with a workbench of 1x2m, operators can 

not reach some parts of the work area, forcing them to climb on the table to complete 

the teaching in some areas. It would be necessary to add some mechanism to guide the 

robot remotely for some scenarios posed in REMODEL. 

• During kinesthetic teaching, the operator needs to switch between the robot grasping 

(for the robot guidance) and the tablet placed in the work area. These changes caused a 

loss of focus, making it difficult to define the desired trajectory, especially in complex 

routes. Therefore, the investigation of new ways to introduce commands on the system 

would be celebrated by operators. 

Therefore, it was decided to investigate two new items to enhance the Teaching-by-

Demonstration framework: 

• The use of a 6D joystick to remotely control the robot during the teaching 
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• The inclusion of EMG sensors to introduce commands seamlessly in the teaching 

application 

The next lines provide further information about both developments. 

4.1. Joystick-based Teaching 

To enhance traditional kinesthetic teaching, the initial idea is to introduce a mechanism to 

guide the robot remotely to allow teaching in narrow and uncomfortable setups. To this end, a 

6D joystick has been included in the framework; specifically a portable 6D joystick (see Figure 

4) that operators can place at any part of the cell. Additionally, one of the premises is that both 

kinesthetic teaching and joystick-based teaching must coexist, switching between both modes 

easily. 

 

Figure 4 - 6D joystick for robot guidance 

Initially, a complete control framework was implemented to allow an easy integration of 

the joystick, framework depicted in Figure 5. The implementation includes the next modules: 

 

Figure 5 - Control framework for the 6D joystick 

• At the lowest level, a Cartesian twist controller has been implemented following the 

ROS Control paradigm. Specifically, the Multitool Controller receives Cartesian 

twist commands and generates the next joint position command using the Jacobian. 

To enhance its possibilities, the controller offers topics to change the robot's TCP and 

reference frame in real-time. This controller is inserted in the robot's Controller 

Manager node, which sends position commands to the robot at a frequency of 250Hz. 



 
 

 

       11 

 

 

• At a higher level, the Joystick App manages all the aspects of the joystick. To 

facilitate the use, and taking into account the dual-arm setup and the needs of the 

REMODEL tasks, the application offers the next options: 

o Activate the joystick, which internally changes the robots' controllers to the 

Multitool Controller. 

o Select the active arm, choosing between the left arm, the right arm, or both 

simultaneously. 

o Select the speed between low, medium, and high speed. 

o Select the active movement axis. As some of the teaching tasks require 

moving or rotating in some specific axis of the workspace, the application 

offers the possibility to "mute" the linear and rotational movements at any 

time. 

o An additional User Interface was developed to manage the aforementioned 

joystick options. 

 

 

Once the Joystick Application was developed, it was necessary to update the Teaching-

by-Demonstration framework to include the new joystick option. As the Joystick App can act 

as a standalone application to manage the robot arms through the 6D joystick, it was 

necessary only to modify the initial teaching interface (Figure 6) to mark if the operator is 

performing the standard kinesthetic teaching or joystick-based teaching. 

 

Figure 6 - Teaching-by-Demonstration UI with joystick activation 



 
 

 

       12 

 

 

The next images show an operator teaching the robot to grasp and route cables using both 

the kinesthetic and joystick-based approaches. 

 

Figure 7 - Operator using kinesthetic and joystick-based teaching 

 

4.2. EMG 

Existing literature on PbD mainly focuses on single modalities for robot trajectory 

demonstrations: observational and kinesthetic PbD. Real-world applications, especially in 

industry, often require piece-wise trajectory definitions from different modalities. For 

example, kinesthetic PbD is preferred for its simplicity and operator intuitiveness, while 

joystick-driven teleoperated PbD could be used for inaccessible segments due to workspace 

limitations. We therefore provide additional programming degrees of freedom for 

collaborative functionalities while demonstrating robot trajectories using a composition of 

both teleoperated and kinesthetic modalities without compromising any PbD capability. 

To also address the challenge of providing users with additional programming degrees during 

PbD  without requiring extra upper limb movements, we propose using wearable human-robot 

interfaces based on biological signals and cutaneous stimulations. Brain-Machine Interfaces 

(BMIs) have potential but lack sufficient reliability, while surface Electromyography 

(sEMG)-based neuromuscular interfaces offer stability and effective human motor intention 

estimation. Our approach leverages sEMG measurements of forearm's co-contraction level 

(CC-level), modulated by the user as an additional programming input via hand stiffening 

level changes. To assist users in this modulation, a vibrotactile feedback through a wearable 

coin motor is provided, regulating vibration intensity in real-time. Fig. 8 illustrates the 

proposed programming concept. Note that, in literature, various examples of using user 

impedance to teach robots have been explored, but, unlike these previous works, our 

framework uses sEMG to estimate the user's overall hand stiffness from forearm muscles, 

instead of an estimation of the arm end-point impedance. This allows providing an additional 

programming input for the user that can be freely modulated. 
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Figure 8 - PbD enhanced by sEMG 

The performed experimentations (Figure 8) demonstrate that the framework enables the 

programming of two robot functionalities during PbD: manipulator compliance and gripper 

grasping. Participants programmed a robot trajectory via PbD, utilizing kinesthetic PbD for 

the first part and teleoperated PbD for the second part, the latter being inaccessible due to 

work table encumbrance/limitations. Meanwhile, they used the wearable interface to modulate 

the CC-level for grasping wires and adjusting robot compliance during the task. 

 

Figure 9 - Experiments with the sEMG-enhanced PbD approach 

Online automatic execution of the robotic wiring task achieved a 100% success rate, 

showcasing the approach practical viability. This approach paves also the way for even more 

versatile and user-friendly programming of collaborative robots, allowing them to perform 

complex tasks in various scenarios, ranging from industrial applications to service contexts 

with close human-robot interaction. 

5. SEMANTIC TEACHING 

All the content within this section has been adapted from [5]. For a more scientific and 

detailed explanation of the approach, please refer to this article. 
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5.1. Approach Overview 

Programming by Demonstration (PbD) approaches can be divided in two main categories: 

PbD for low-level motion, which focuses on learning trajectories from the user’s 

demonstration, and PbD for high-level task, which prioritizes extracting the semantic meaning 

of human actions to understand the goal of the demonstration. In REMODEL project these 

two lines have been investigated, developing approaches for both of them. While Sections 

¡Error! No se encuentra el origen de la referencia. and ¡Error! No se encuentra el origen de

 la referencia. focus on the PbD for low-level motion systems, this section presents an 

approach for PbD for high-level task. 

The aim of this approach is the extraction of the high-level plan for the demonstrated task, 

containing the sequence of skills to be executed, while the robot trajectories within these 

skills are automatically optimized by utilizing the information provided about the working 

environment layout and the characteristics of the manipulated object, which is provided by the 

CAD Platform (T3.1) (see Figure 10). Thanks to this, the programming responsibilities can be 

separated between the robot programmer (who develops the robot skills), and the task 

specialist (who demonstrates how to perform the task, or in other words, who demonstrates 

how to combine the existing skills to achieve the goals of the task). 

 

Figure 10. Integration of semantic teaching within the REMODEL system. 

To improve the clarity and understanding of the developed approach, we have created an 

accompanying video1, which complements the text offering a visual guide to all the steps and 

techniques involved. The video also illustrates the practical application of the approach, 

showcasing some of the performed experiments. We highly encourage the reader to watch it 

before continuing reading. Additionally, as stated before, a more exhaustive and technical 

analysis of the approach can be found in [5]. 

As it was previously introduced, the goal of this approach is understanding and digitizing 

single-arm manipulation processes performed by humans, based on the data captured by 

different kinds of sensors. The approach is sensor-agnostic, as long as these provide 

 

 

1 https://www.youtube.com/watch?v=nPZHHYW00rE  

https://www.youtube.com/watch?v=nPZHHYW00rE
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information about the user’s movements and/or interactions with the manipulated objects. As 

the data captured from these sensors is simple and independent it can’t be compared directly 

with a manipulation process. Therefore, the data collected from all of them has to be 

processed, and integrated, to increase its complexity level. Thus, the proposed methodology 

differentiates four manipulation levels according to the data complexity:  

• Sensor’s data: Raw data captured by the sensors, which depends on the sensor’s 

type and resolution. For instance, the cartesian coordinates of the hand, or the 

bending angle of a finger. 

• Primitive: Discretized sensor’s data with a semantic meaning. They can be 

further categorized into different primitive’s variables depending on the type of 

information they provide.  Some examples of primitive’s variables are: the hand 

rotations (e.g., +Yaw rotation, -Roll rotation…), calculated from the sequence of 

hand orientations, or the hand gestures, obtained by anlyzing the bending angles 

of all the fingers. 

• Operation: Simplest manipulation action that can be performed with an object. It 

can be modeled as the combination of multiple primitive variables sequences. For 

instance, an operation could be grasp, screw, or insert. 

• Process: Combination of operations performed with or on an object, in sequence, 

to achieve common goal. An example of a process could be a switchgear wiring 

connection, defined a sequence of indidual operations: grasping the cable, 

inserting it in a terminal block, screwing the connection, routing the cable through 

a wire collector, and so on. 

The system is composed of five modules. Three of these modules are in charge of 

increasing the complexity level of the manipulation data. First, the Discretizing module 

converts the data captured by the sensors to the primitive level. Then, the Understanding 

module converts the primitives into operations utilizing Markov Models, and finally, the 

Sequencing module converts the segmented sequence of operations into a process. The last 

two modules are Training, which trains the Markov Models of the operations; and Interface 

and Calibration, which is used to guide de user and calibrate the sensors. An overview of the 

entire system can be seen in Figure 11. 
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Figure 11. Semantic teaching system overview. Taken from [5]. 

5.2. Data processing 

The biggest challenge in this approach is how to convert the sequences of primitives from 

different variables into operations. As stated previously, this is handled by the Understanding 

module, which exploits the concept of Markov Models. However, due to the complexity of 

the manipulation data, this problem couldn’t be solved by using conventional Markov 

Models, and a novel approach named as Optimized Multiorder Multivariate Markov Model 

was implemented. These models combine Markov Models from different primitive variables, 

and from multiple orders, optimizing the weights of each of them for the operations of every 

object to maximize its recognition accuracy. This way, if the information of a variable is not 

relevant for performing a certain operation, its weight would be reduced, and just the other 

variable models would be taken into account. On the contrary, if the recorded sequence of 

primitives was not divided into different variables, if any of them were not relevant, these 

would affect the transitions of the entire demonstration and it wouldn’t be possible to cancel 

their effect. For instance, to identify a bottle shaking operation, it would be interesting to pay 

more attention to the transition of hand motion primitives and less to the transition of finger 

movements primitives. The optimization of these weights is performed automatically by an 

iterative algorithm. Regarding the order of the models, the similarity between the recorded 

operation and its model typically decreases as it increases. This is because higher-order 

models are more sensitive to deviations from the ideal model. However, this increased 

sensitivity also leads to an increased similarity ratio between the most similar operation and 

the other operations, which can help to distinguish between similar operations. Therefore, the 

choice of the order of the model depends on the specific variable being modeled.  

Considering all this, for an isolated operation recognition, the likelihood of the observed 

sequences of primitives (obsj) is computed for each possible operation using its corresponding 

model, and the operation with the highest probability is then selected (op). Each operation (i) 

is characterized by a Multiorder Multivariate Markov Model (λi), which consists of multiple 

models (λi,j), one for each primitive’s variable (j). Each one of these models has an associated 

weight (Wj). The order of the model for each variable is determined empirically. Thus, the 

following formula is used for the isolated operation recognition: 
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𝑜𝑝 =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑖
( ∑ 𝑊𝑗

𝑙𝑒𝑛(𝑓𝑖𝑙𝑒𝑠)

𝑗=0

⋅ 𝑃( 𝑜𝑏𝑠𝑗 ∣∣ λ𝑖,𝑗 )) 

The complexity of the problem increases when the operations are not isolated, but they 

are part of a process. In this case, as there is no information about the start and end point of 

each operation, the models can’t be applied directly and the use of a segmentation algorithm 

is required. The method followed is based on the sliding window technique, evaluating the 

probability of every possible operation along the demonstration timeline in windows of four 

primitive transitions. The first step is to identify the maximums in every operation's initial 

state probability timeline. Then, for every detected maximum, the average transition 

probability of every operation is calculated for the subsequent evaluation window (i.e., the 

average transition probability during the next four primitive transitions). If the average of the 

highest values in the window corresponds to the operation with the highest initial state 

probability and surpasses a threshold of 30%, then the operation is added to the segmented 

sequence. Additionally, when a new operation is detected, the hand coordinates during that 

evaluation window are analyzed to identify the location where it was executed. A more 

exahustive analysis of the implemented segmentation approach can be found in [5]. 

After this step, a high-level plan for the robot is extracted, which contains the list of 

operations to perform and their respective locations. However, not all these operations may be 

necessary to achieve the ultimate manipulation goal. This can be due to multiple reasons, such 

as segmentation errors, sensor inaccuracies, data limitations, or inefficient execution. To 

address this issue, the system includes a final Sequencing module. This module identifies the 

executed process based on the segmented list of operations. It does this by comparing all 

potential combinations of the segmented operation sequence (without altering their order) 

with the operation sequences of all the potential processes related to the handled object. The 

method also accounts for the probability of incorrect operation detection, utilizing the 

operations confusion matrix generated from the training data. Ultimately, the process with the 

highest similarity is selected. 

5.3. Experimental evaluation 

The system was tested for recognizing distinct operations and processes performed with 

five different objects: bottle, pliers, screwdriver, taping gun, and hammer. The sensing 

devices used to capture the user’s movements were a dataglove, which captures the hand 

orientation, fingers bending, and pressure in the fingertips, and a motion tracker, which 

captures the cartesian position of the hand. The system was trained with 40 demonstrations of 

each operation, performed by 4 different users. Figure 12 shows a user of the system 

recording a demonstration. 
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Figure 12. User recording a manipulation demo. 1: hand tracker, 2: dataglove, 3: manipulated object. Adapted from [5]. 

These experiments showed good results both for recognizing isolated operations and 

operations within a process. In the case of isolated operations, the average operation 

identification accuracy was higher than 70% for four of the five tested objects. Regarding the 

analysis of processes, the percentage of perfectly segmented processes was around 35%. 

However, these results improved significantly after analyzing the segmented sequences with 

the Sequencing module, reaching a process identification accuracy of almost 70%. This 

increases to more than 80% when five demonstrations of the same process are provided. For a 

more detailed discussion about the results, please refer to [5]. 

5.4. Robot’s trajectory generation 

The system described in this section extracts the semantics of a manipulation process, 

digitizing it into a high-level plan, which contains the sequence of operations to perform and 

the locations where to perform them. However, this still needs to be translated into commands 

and trajectories for the robot. An approach for this was presented in [6], where all the possible 

operations were predefined as parameterized functions, named skills. This way, the 

segmented sequence of operations would determine which skills to call, and the operation 

locations would be the parameters used to configure them, optimizing the robot's trajectory in 

every situation. In [6], these skills were programmed to optimize the robot trajectories based 

on the input parameters and information about the process and the geometry and distribution 

of the working environment provided by the CAD Platform Interface (T3.1). However, an 

alternative would be to combine this approach with the Enhanced Teaching-by-Demonstration 

presented in Section ¡Error! No se encuentra el origen de la referencia.. This way, the 

sEMG-enhanced kinesthetic teaching would be used to define the trajectories of the individual 

skills, while the semantic teaching would be used to define the sequence of skills to be 

executed. 

 

6. CONCLUSION 

This document summarizes the work carried out in task T3.3. Initially, the developed 

Teaching-by-Demonstration framework has been presented. The application can record the 
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robot's position with a frequency of 10Hz, offering a web User Interface to interact with the 

system and insert relevant points (e.g. grasping/release points) in the trajectory. For the 

execution phase, the application can retrieve all the recorded data, filter it and generate robot 

trajectories based on the user's parametrization, proposing a higher level of data management 

than in the classic approaches where only the final points of the trajectories are used in the 

execution. 

Even so, during the tests carried out in the different use cases, several limitations were 

found in the application of the kinesthetic teaching paradigm. Therefore, some experiments 

have been carried out to investigate and explore new ways to enhance the classical Teaching-

by-Demonstration. On the one hand, an enhanced Teaching-by-Demonstration has been 

explored making use of an external 6D joystick and an EMG sensor, which include additional 

ways to interact with the teaching framework. On the other hand, high-level semantic 

teaching has also been considered, in an attempt to overcome the classical point-to-point 

teaching. 

These developments offered a functional tool for the teaching of applications and 

program parts for DLO manipulation, as well as new ways to face and enhance classical 

teaching solutions. 

7. DEMONSTRATOR VIDEOS 

Enhanced Teaching-by-Demonstration [LINK] 

Teaching-by-Demonstration & EMG [LINK] 

Semantic teaching: [LINK] 
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